INSIDE:
Rewards of Research: CEE Faculty Receive Honors for Groundbreaking Work
Dear alumni and friends,

We begin this year’s issue by spotlighting prestigious professional recognition a few of our faculty members have received this past year. The awards come from the organizations of the National Academy of Engineering, American Society of Civil Engineers, American Association of Engineering Societies, and the Society for Industrial and Applied Mathematics. Professor Shoemaker and Stedinger’s research and teaching abilities (along with my own) have culminated in receiving said recognition for our lifelong work.

In addition to these recognitions, the School welcomes two new faculty members to the environment mission area. Professor Pat Reed, coming from Penn State, began his career in CEE on July 1, 2013. His primary interests involve sustainable water management around conflicting human and ecological demands. Assistant Professor Damian Helbing came to us in January 2014 from the Swiss Federal Institute of Aquatic Science and Technology (Eawag) in Switzerland. Helbing studies water quality in relation to human and ecosystem health. More about their research focus is detailed within this newsletter.

As we welcome Reed and Helbing, we also continue our faculty renewal process. I am pleased to report that we have recruited an outstanding new faculty member in the Civil Infrastructure area, who will join us in Fall 2014. The faculty search for the CornellTech project is still on-going, and we will initiate more searches in the coming academic year. However, in order to attract outstanding new faculty, we must upgrade our laboratory/teaching facilities, thus we are planning a renovation project for the Environmental Processes Laboratory. A fund raising campaign for the project has begun.

As we greet new faculty, we have two faculty retiring this year: Professors Jim Bisogni and Tony Ingraffea have announced their intentions to retire. As we welcome Reed and Helbing, we have two faculty retiring this year: Professors Jim Bisogni and Tony Ingraffea have announced their intentions to retire. Ingraffea started his career in CEE in 1982 and has been a faculty member in the Civil Infrastructure area, who will join us in Fall 2014. Ingraffea started his career in CEE in 1982 and has been a faculty member in the Civil Infrastructure area, who will join us in Fall 2014.

Lastly, in 2015, Cornell University and CEE will be celebrating its 150 year anniversary. To begin reflecting on the School’s history, Professor Emeritus John Abel and Jim Allen, CALS ’69 tell us about Camp Cornell — how it got started, and what it was like. After reading this article, we hope you will share your stories and pictures of your own Cornell experience along with any news you have to share with us at civil.env, eng@cornell.edu. We enjoy hearing from you. Do not forget to join your classmates, faculty and staff at our annual Alumni Breakfast during reunion weekend, see the date and time on the back page. We look forward to seeing you there!

Sincerely,

Class of 1912 Professor and CEE Director

Phyllis L. Little
Director, CEE Update

FROM THE
Director

Rewards of Research: CEE Faculty Receive Honors for Groundbreaking Work

BY LAUREN CAHOON ROBERTS

Last year and this spring have been filled with distinctions and honors for many faculty members in CEE. In particular, faculty who focus on environmental and water issues in their research have been singled out. From optimizing groundwater restoration, to developing international tsunami warning systems, to quantifying flood risks, the scope and importance of CEE faculty research has now been recognized by four prestigious organizations, the American Society of Civil Engineers (ASCE), the National Academy of Engineering (NAE), the Society for Industrial and Applied Mathematics (SIAM), and the American Association of Engineering Societies (AAES), highlighting the research and teaching excellence that this School has to offer.

The ASCE, founded in 1853, is America’s oldest national engineering society, representing over 145,000 members of the civil engineering profession worldwide. In 2013, the ASCE recognized Philip Liu and Jenny Stedinger as Distinguished Members, a distinction given to only about 10 people each year. They join professors Christine Shoemaker, Pete Loucks and Fred Kulshaw, who were previously inducted as ASCE Distinguished Members. “Distinguished membership is the highest accolade a civil engineer can get aside from ASCE president,” says Jane Alspach, Senior Manager of Honors and Awards with the ASCE.

On top of these honors, Stedinger was also awarded the ASCE Ven Te Chow award, which is given to “individuals whose lifetime achievements in the field of hydrologic engineering have been distinguished by exceptional achievement and significant contributions in research, education or practice.” Christine Shoemaker was also single out this year by the ASCE’s Environmental & Water Resources Institute (EWRI), who gave her the Margaret Petersen Award for her technical achievements, ASCE leadership, and commitment to mentoring women pursuing engineering careers. Stedinger has also been elected as a member of the NAE, which, founded in 1964, is a member of the National Academies and provides engineering leadership in service to the nation. Stedinger’s election this spring is an honor that, according to the NAE website, “is one of the highest professional honors accorded an engineer.” Stedinger joins his colleagues Professors Christine Shoemaker, Tom O’Rourke, Pete Loucks and Will Brutsaert who are already NAE members.

Shoemaker has additional accolades; she has been awarded the 2014 National Engineering Award from the AAES, which acts as the umbrella organization for multiple different engineering societies, serving as “the voice of the engineering profession in the United States.” Previous winners have included University Presidents. And, last but not least, she was also elected a Fellow in SIAM in 2014.

Professor Christine Shoemaker was “very pleased and very surprised,” to receive these honors. When Shoemaker first came to Cornell’s CEE, she focused on groundwater problems with an environmental focus, and later was appointed chairperson of the department of Environmental Engineering. “I think at that time I was one of the first women in the country to be a chairperson of any engineering department at a research university,” says Shoemaker. “My department was very enlightened in the mid 80’s to have encouraged the Dean to select a woman as department chair. That was the most difficult job I ever had, I think; to be chair of a department of all men, in a college that was almost all men, given the societal attitudes at that time” she says. “Half the department was older than me, and I wasn’t a ‘real’ civil engineer.” Nevertheless, her unusual expertise was ultimately a boon. “Having a Ph.D. in mathematics enabled me to move into new research areas that a traditional civil engineer wasn’t trained to do. I also did a lot of self-study about environmental engineering since protecting the environment was my goal.” For example, Shoemaker used mathematical optimization methods to efficiently find the best solutions for groundwater treatment methods. “I was doing that having to use computationally expensive analyses. ‘These algorithms can tell you the best way to clean up groundwater, how quickly it can be remediated, and what the cost will be,’” she says. “Models for these systems are very nonlinear and difficult to deal with.”

Simultaneously, Shoemaker spearheaded an international project to bring information on groundwater pollution to developing countries. “These developing countries were agrarian and didn’t have a lot of industrial pollution, but it was growing,” she says. Her goal was to help prevent the contamination--rather than help clean it up. To do this, Shoemaker helped organize and raise money from the United Nations for expert-led workshops around the world, an effort that lasted for roughly ten years. “For a lot of places, our workshops were the very first meetings on groundwater contamination in these countries,” she says. “There were many more after that, but ours were the ones that got things started.” Since then, Shoemaker has continued to apply her mathematical expertise for environmental benefit. A recent project focused on the Cannonsville Reservoir, that provides water to New York City, which has no filtration plant, and would...
Patrick Reed Brings a World of Experience to Cornell by LAUREN CAHoon ROBERTs

Patrick Reed has made a career out of managing water re-
sourcing, an interest that began with a powerful event. While
getting his degree in geological engineering at the Universi-
ty of Missouri, Reed's hometown, St. Louis, was hit by the 1993 flood of the Mississippi. Pre-Katrina it was the largest natural disaster in U.S. History." Reed says. "So I got to see my friends and family in
the first to point out the importance of the lack of evidence of
floods for that period of time that exceed some threshold−that tells you
about inundation zones. "Over the years we have developed several different models that
help us understand wave dynamics better," says Liu. "From a practical perspective, we developed a tool that helps engineers design coastal structures and estimate how a structure is going to behave."

In the early days of his research, Liu says it wasn’t easy to find funding−very few large tsunamis had occurred, thus research on these phenomena wasn’t considered pressing. Nevertheless, Liu and his colleagues continued their work, investigating the use of ocean buoys as a potential offshore warning system for

Professor Jery Stedinger’s ASCE Ven Te Chow award was given for his “pioneering contributions to hydrologic and statistical methods used worldwide to quantify flood risk, address dam safety issues, drought risk, evaluate water resource system operation and evaluate drought risk.” His induction into the NAE cited his use of statistical methods in flood risk assessment and optimization methods in hydropower system management.

Since joining the CEE faculty in 1977, Stedinger has tackled optimization problems related to the design and operation of reservoir systems including hydroelectric operations. Stedinger’s research had a dramatic impact on flood risk assessment procedures by illustrating the potential value of incorporating historical data, such as flood markers on old buildings, checking old newspaper records, or pursuing other records. He was also the first to point out the importance of the lack of evidence of flooding when creating flood frequency models. "People would say, 'we don’t have any records of floods in this area, so we don’t have any information.' To the contrary, you actually have important information—it means there have not been any floods for that period of time that exceed some threshold—that tells you
that there is no evidence.

need to spend $81 billion to build one. Shoemaker has created models to predict the impact of different strategies on reducing pollution. She is also using her models to analyze the integration of hydropower with wind power, and how to predict geological and hydrological effects of carbon sequestration. Shoemaker is also working with Jery Stedinger to analyze optimal functioning of the Bonneville Power Authority to ensure it meets the region’s power needs without waste and ecological damage.

While Shoemaker’s optimization algorithms have had broad-reaching benefits for hydroelectric systems, they have an even wider reach beyond natural resources and pollution. “We’ve developed a methodology and algorithms that can also be used for many problems that arise in engineering and other fields,” she says.

Patrick Reed will continue the work he started prior to joining Cornell’s School of Civil and Environmental Engineering, tackling the questions of how humanity should manage climate risks, along with research related to helping urban water utilities manage their water resource portfolios. He is also leading a Blue Waters project, which uses one of the largest supercomputers in the world to discover new design strategies for observing global precipitation via space. Reed also has active collaborations with institutions in Milan and London examining how best to manage water supply and reservoir operations in major river basins.

While his work has taken him around the world, including a stay on Italy’s famed Lake Como, Reed believes Ithaca is hard to beat. “I like the fact that Cornell is becoming a hub of life in terms of the surrounding community and town,” he says. “That, combined with the caliber of the university and the freedoms supported in the University, you’d be hard pressed to find anything better in my book.”
Applies Innovative Approaches to Environmental Problems

BY LAUREN CAHoon ROBERTS

If you ask Damian Helbling, one of CEE's newest faculty members, which books had the most significant impact on his academic interests, he'll list three—Silent Spring, an ecological classic; Our Stolen Future, which describes the dangers of endocrine disruptors; and Environmental Organic Chemistry, a hefty textbook that "describes our current state of knowledge on how chemicals behave in the environment," says Helbling. These three books helped propel Helbling on a path investigating how man-made contaminants move and change through natural and engineered water systems, and how to lessen their impact on humans and the environment.

Helbling majored in civil engineering with a minor in environmental engineering at Pennsylvania State University as an undergrad, and moved through the maze of biofilm-laden root systems of cattails and bullrushes. "The experience was huge in solidifying my interest and drove me to get it off the ground," says Helbling, "so I ventured to the nexus of the universe as a post-doc.

There, he focused on predicting where organic chemicals end up in the environment, and how they transform. Traditional analytical methods look for the specific chemicals, yet natural chemical reactions can change a contaminant's structure slightly, disguising it from monitoring efforts yet still leaving it a dangerous pollutant. With roughly 75,000 different man-made chemicals poured into the environment on a daily basis from human activity, this presents a daunting challenge. "If we want to understand whether a contaminant could transform, Helbling wants to solve this problem by taking a generalist approach: "if we haven't studied a certain chemical or its breakdown-products. "This streamlines the process. You can make predictions on how it will transform in the environment and whether or not the transformation products will still pose a risk?"

Helbling started tackling this problem at Eawag, and continues the work at Cornell, where he recently started as an Assistant Professor in January 2014. He uses high-resolution mass spectrometry to propose the structures of the products of chemical transformations with a high degree of confidence. "The instrument measures the exact mass of these chemical products," he says, which enables him to indirectly deduce the molecular formula, and, potentially, the chemical structures of contaminant breakdown-products. "This streamlines the process. You can make proposals on the structures of these chemicals with much higher confidence." At Cornell, Helbling will also focus on how to revolutionize wastewater treatment systems. A new approach is sorely needed—wastewater systems were originally designed to protect humans from the spread of infectious diseases. Later, they were revamped to remove nutrients that were damaging surface water systems. "Now, we want to protect us from these tens of thousands of chemicals in our water—that's my primary motivation," says Helbling.

With his array of ambitious research aims, Helbling has come to the right institution. When he was applying to faculty positions, Cornell's reputation as a research-oriented and goals-oriented strongly to Helbling's drive and multi-faceted research interests. "The School of Civil and Environmental Engineering was very supportive of my research march ideas," he said. "I had a strong sense that they were interested in what I was doing, and wanted to help me get it off the ground."
Anthony R. Ingraffea

Anthony Ingraffea, known to most as “Tony,” has announced his intention to retire on June 30, 2014. He enjoyed two years as a structural engineer with the Grumman Aerospace Corporation and two years as a county engineer with the Peace Corps in Venezuela before earning his doctorate at the University of Colorado in 1977. Since then, he has taught structural mechanics, structural engineering, and fracture mechanics at Cornell.

Throughout his career, Ingraffea has focused on computer simulation and practical testing of complex fracture processes. He and his students have published over 250 papers in these areas, and performed pioneering research in the use of interactive computer graphics in computational fracture mechanics. His group has won several national awards for their research, including a NASA Group Achievement Award in 1996 and a NASA Aviation Safety Turning Goals into Safety Award in 1999 for his work on the issues of aging aircraft. Ingraffea has also twice won the National Research Council/U.S. National Committee on Rock Mechanics award for outstanding research. He has achieved both of the highest awards in fracture mechanics: the George Irwin Medal, and becoming a Fellow of the International Congress on Fracture. Additionally, he was appointed to the Dwight C. Baum Professorship in Engineering at Cornell in 1992. Finally, since 2006, Ingraffea has been an Associate Editor of the field’s most influential journal, Engineering Fracture Mechanics. Moving forward, Ingraffea will continue to consult on fracture problems in industry and in government through Fracture Analysis Consultants, a company he helped form in 1988.

In addition to his achievements in research, Ingraffea has received numerous school and college awards for his outstanding teaching. He has been named a Weiss Presidential Teaching Fellow. Throughout his teaching career, Ingraffea believed that “the "what“ is just as important as the “how“ in learning: “I know from my teaching experience, and from the literature of educational psychology, that clarity of presentation, responsiveness to student needs, and, most importantly, remembering what it was like to be a student, are the most important aspects to effective pedagogy.”

Community service has been an important aspect of Ingraffea’s career. He has enjoyed participating in STEM (Science, Technology, Engineering, and Mathematics) K-12 outreach programs in various inner-city school districts to encourage and inspire interest in students from under-represented groups. In the past five years, his research in rock fracture has led him to international prominence in the so-called “fracking” problem related to energy policy. In 2011, TIME Magazine named him one of its “People Who Mattered” for his efforts in public education and legislative advocacy on this issue. He frequently appears on national TV and in documentaries exploring the environmental, health and climate change connections. He will continue as President of Physicians, Scientists, and Engineers for Healthy Energy, an NGO which he helped to found in 2010.

Ingraffea is an avid fly fisherman and enjoys both local waters and a yearly trip to Alaska, where he has been known to give guided fishing tours. He and his wife, Janet, plan to stay in Ithaca and enjoy traveling more to visit their four children and three grandchildren in various parts of the country.

**Symposium and Dinner on September 27**

In honor of Professor Ingraffea, CEE will host an all-day retirement symposium followed by a dinner on Saturday, September 27, 2014. Further information will be posted on the CEE website by early summer. http://cee.cornell.edu
Developing countries.

to preserve and enhance quality of life in the foreseeable future. Cornell University is the limiting resource on the planet for fresh water, a critical need worldwide, and fresh water is the limiting resource on the planet for the foreseeable future. Cornell University students have built an innovative municipal water treatment system in Honduras that now improves the design to reduce the water treatment system in Honduras that students have built an innovative municipal water treatment system in Honduras that now improves the design to reduce the...

The official program ran from 9:00 a.m. to 2:30 p.m. and concluded with the awarding of prizes for the five highest-scoring presenters. The graduate students each had ten minutes to talk about an aspect of their current research. Audience members then had three minutes for questions. During the course of the day, a total of nine ECE faculty served as judges. One of the judges, Professor Daniele Bini, had this to say, "As a new faculty member, I found the symposium to be a fantastic venue to meet and interact with the current graduate students and to be introduced to the breadth of research taking place in the School." The symposium offered students an opportunity to talk about their research with a more diverse audience than usual. "It's a chance to practice public speaking and presenting your technical work to a general audience," says structural engineering major Brett Davis. "The challenge is being able to convey the presenter's ideas, and on the visual aids were organized and used in an audience with a wide variety of CEE backgrounds." Graduate student Casey Garnand, another of the prize-winners, was impressed by the range of topics covered. "The problems that are being worked on in this School and the methods used are quite diverse. I was happy to have an opportunity to listen at an event where so many ideas were so well explained," Garnand told CEE Director Phil Liu concurs, "This symposium really reflects the diversity of the School in terms of research areas and students' backgrounds." Graduate student Casey Garnand appreciated the symposium as a welcome break from her usual tasks, "It gave me the opportunity to step out of my day-to-day tasks of running experiments and processing data to explain what I do and why it matters."
Professor Bill McGuire’s former Ph.D. students at his Memorial gathering on September 7, 2013. l to r, with a * indicating those for whom Professor McGuire was chair of their Special Committee: Prof. Emeritus John Abel, Yeong-Bin Yang,* Marcelo Gattass, Donald White,* John Gross,* Carlos Pesquera,* Samir Hanna, Jerry Hajjar, Ronald Ziemian*. Yang, Pesquera and Ziemian were speakers at the memorial.

Professor Nilson received a bachelor of science degree from Stanford University, master of science from Cornell University, and a doctorate in engineering from the University of California at Berkeley. He held visiting appointments at Manchester and Salford Universities in England and at the Politecnico de Milano in Italy. Upon his retirement from Cornell in 1991 he moved first to coastal Maine and then to Cape Cod. He was an enthusiastic sailor for all of his life, owned many boats, and particularly loved coastal cruising in New England waters from the Long Island Sound to the central Maine coast.

He played clarinet and saxophone for pleasure and professionally during his high school years, leading to a lifelong love of music of the “swing” era of the 30’s and 40’s, and well as of classical music. An enthusiastic photographer, he created a gallery of photos based on his travels at home and abroad. He was a skilled woodworker, built furniture, and did extensive cabinet work over the years.

Nilson had a strong interest for many years in residential architecture. He designed and built four residences in New York State, Maine, and Massachusetts, the first of which was selected for publication in a national home magazine. Nearly one-thousand sets of plans were sold. His architectural tastes ran toward what he described as “conservative contemporary” and all featured studio ceilings, extensive use of glass, and wide balconies.

Professor Nilson is survived by his wife Linda, by four children of a previous marriage: Russell Nilson of New Orleans, Sheryl Sedgwick of Charlottesville, VA, Carol Hansen of Ithaca, NY, and Kim Kabies of Washington, D.C. and by four grandchildren.
Executive Vice President (0008180) is a civil engineering graduate of the Revolutionary War, the decor includes historical significance. The Washington Monument, is on the National Mall. Paxton didn’t take ROTC; the focus was on engineering analysis, and academic leadership.”

Source software for earthquake engineering research, recently elected to the National Academy of Sciences. The prestigious Blue Planet Prize, announced by the Asahi Glass Foundation of Tokyo, acknowledges Sperling for his “ability to bring together top thinkers and strategists in academia, government and industry to develop new vehicle and fuels policy approaches that are models for the world.”

Faculty

John Abel was awarded the Eduardo Torroja Medal by the International Association for Shell and Spatial Structures (IASS) on September 23, 2013 during its annual symposium, held in Wrocław, Poland. His proposal is the highest honor of the IASS and is named for the renowned Spanish engineer who founded the association of engineers and architects in 1919.

Todd Cowen is a recipient of the 2013 College of Engineering’s James and Mary Tien Excellence in Teaching Award. Todd Cowen was selected to participate in the National Academy of Engineering’s 2013 U.S. Frontiers of Engineering Symposium. The symposium brings together engineers (ages 30-45) from U.S. companies, universities, and government labs to discuss leading-edge research and technical work across a range of engineering fields.

Fred Kulwaha is the recipient of the 2014 Martin S. Kipp Foundation Engineering Award from the Geo-Institute of ASCE. In addition, Kulwaha is the recipient of the “Geo-Institute Hero Award.” The award is presented to an individual who has provided significant contributions to the Geo-Institute, the geo-profession, or global environmental welfare, as determined by the annual Geo-Congress conference organizing committee.

Pete Lourakis, a lecture series has been established in his honor by the International Commission on Irrigation and Reclamation (ICER) of IAHs (International Association of Hydrological Sciences). The lecture series, to be an annual event, will be given by scientists who provide outstanding contributions to the field of water resources assessment and management. Lourakis will give the first lecture in Bologna, Italy on June 4, 2014.

Tom O’Rourke has been selected by the ASCE’s Technical Council on Lifeline Earthquake Engineering (TCL-EE) as the recipient of the 2014 Le Val Lund Award for Practicing Lifeline Risk Reduction.

Just before the newsletter went to the printers, ASCE announced that O’Rourke has been named a Distinguished Member of the American Society of Civil Engineers in recognition for his leadership and contributions in the “safety and security of critical infrastructure through earthquake protection of water supply, gas, liquid fuel, and transportation systems.”

Patrick Reed was selected to participate in the National Academy of Engineering’s 2013 U.S. Frontiers of Engineering Symposium. The Frontiers Program is to bring together engineers from all disciplines to facilitate cross-disciplinary exchange and promote the transfer of new techniques and approaches across fields in order to sustain and build U.S. innovative capacity.

Mark Turquiss is a recipient of the 2013 College of Engineering’s James and Mary Tien Excellence in Teaching Award. Derek Werner was selected to participate in the National Academy of Engineering’s 2013 U.S. Frontiers of Engineering Symposium, the symposium brings together engineers (ages 30-45) from U.S. companies, universities, and government labs to discuss leading-edge research and technical work across a range of engineering fields.

Friedman Shin is a recipient of the 2013 College of Engineering’s John Swanson ’61 ME in honor of his mother, Dorothy G. Swanson Excellence in Teaching Award.

Contact us with your news: civil_env@cornell.edu 607.255.3800 www.cee.cornell.edu

Lab Renovation in Environmental Processes Area

Cornell’s Holstier Hall has been the home to groundbreaking research in the fields of civil and environmental engineering since the 1950s, and continues to support faculty and students with facilities, classrooms, and equipment. Nevertheless, to keep pace with rapidly advancing technology and methods, improvements are necessary for the Environmental Processes (EP) Laboratory, a plan which CEE Director Philip Liu aims to start this coming year.

With your support, the School has already successfully renovated and established state-of-the-art laboratories which include the Boway Laboratory Complex, a 12,500-square-foot space for civil infrastructure research, and the DeFrees Hydraulics Lab, which houses wave tanks, wave-current flumes, and wind tunnels for hydrology and fluid mechanics research. While these facilities have, in part placed CEE in its current position of research and educational excellence, Liu says more advancements are needed, particularly for the EP Lab. “Our plan is to make this area into a much better, more modern space,” he says. “We really need to renovate to attract next generation talent.”

The majority of the School’s faculty is senior level, thus “our highest priority is faculty renewal in a timely fashion,” Liu explains. “Prior to recruiting Damjan Hebling (see page 6), the School decided to renovate lab space and purchase new equipment, including a high-resolution mass spectrometer. This was something that was truly needed for modern research,” he says.

Beyond the equipment, the space badly needs upgrades including HVAC, fume hoods, environmental chambers, student work stations, lighting, electronic controls and data acquisition technology. With this renovation the new EP Lab would be able to serve multiple functions including teaching, student projects and research. The renovation plans are developed with the flexibility to address the varying needs of new faculty. “What this space becomes may very well hinge upon the needs of new faculty hires,” says Liu. “We have projected roughly six to seven million dollars for this initiative,” says Liu. “Our hope is that with combined efforts from the College, alumni and research funds we will be able to create a research and teaching facility that will support and inspire new faculty to lead in the way of civil and environmental engineering.”

CEE Unrestricted Alumni Gifts

Gifts to the Annual Fund are unrestricted. This is a gift that is not designated to a specific program but does make a major difference. Unrestricted funds allow CEE the flexibility to provide support to areas that otherwise might not be realized. As an example, unrestricted gifts are used to assist with undergraduate student needs such as travel to conferences and competitions, student projects, undergraduate student organization events and other educational enrichment activities.

Richard N. White Instructional Laboratory Fund

Gifts provided through this fund are used for equipment upgrades to support the latest technology in our Labs. The White Instructional Lab Fund has added great value to CEE. Our students have benefited through the new technology and the increased online resources available to them. This fund will continue to help support future instructional and research operations.

Alumni support has been very valuable to the School. Without the support of our alumni and friends, many of our current activities would be limited. The following three funds are important ways to contribute to the success of the School.

Environmental Processes Laboratories Fund

This fund has been established to receive contributions in support of the environmental processes laboratory renovation. Contributions to this fund will help CEE leverage support from the College and other funding sources. EP teaching and research focuses on water, water treatment processes, sustainable energy, environmental protection, remediation technologies and the fate and transport of contaminants. Your involvement in this initiative will greatly be appreciated.

Damin Hebling in EP Lab

CCE Update Spring 2014
Reunion 2014:
June 5-8
Saturday, June 7
Alumni breakfast buffet: Plan to attend this year’s CEE alumni breakfast—especially if it’s your reunion year. The breakfast is free and will be held from 7:30 to 9:30 a.m. in McManus Conference Center, 166 Hollister Hall. All alumni(ae) and their families are invited. Please let us know if you are planning to attend the breakfast at civil_env_eng@cornell.edu or by phone at 607-255-3690.

Homecoming 2014:
October 17-18
Cornell versus Lehigh